Radon Infiltration in Rented Accommodation

Measurement of radon in homes and variables describing building characteristics Torben Valdbjørn Rasmussen

Danish Building Research Institute, Department of Building Technology and Management at Aalborg University, Copenhagen, Denmark, tvr@sbi.aau.dk

Radon Infiltration in Rented Accommodation

Introduction

Global Alliance

w Buildings and

Accumulated health risk

Building regulations:

- In Denmark the natural sources of radiation is radon
- Radon originates in the ground, from building materials and water (ground is the primary source in Denmark)
- Radon is a radioactive noble gas
- When radon decays into different radon daughters, it generates radiation. It is the radiation from the radon daughters that is harmful to human beings.

- Requirements for new buildings, 100 Bq/m³
- Advised level for existing buildings, 100 Bq/m³

MEASUREMENTS

- 221 homes for rented accommodation and in 9 basements.
- 196 homes were located in 28 multi-occupant houses and 25 homes were located in singlefamily terraced houses.
- 2013/2014 and 2014/2015 between November and May.

Organisers

- Buildings are located in most exposed areas in Denmark
- Built between 1850 and today

International Co-owners:

RESULTS

- Minimum was 1 Bq/m³, maximum was 250 Bq/m³.
- Mean value was 30.7 Bq/m³.

Organisers:

- Homes exceeding 100 Bq/m³ was 5.9%.
- Homes exceeding 200 Bq/m³ was 1.4%.
- All single-family terraced houses.

International Co-owners:

Floor	0-50	51-100	101-150	151-200	>200	No. homes
Ground floor	58	18	7	3	3	88
1st	50	0	0	0	0	51
2nd	38	0	0	0	0	38
3rd	30	0	0	0	0	30
4th	6	0	0	0	0	6
5th	8	0	0	0	0	8
No. homes	190	18	7	3	3	221
Ratio in %	86.0	8.1	3.1	1.4	1.4	100

Variables

Radon for homes in a building with a basement that has not been fire protected. Radon for homes in a building with a basement that has been fire protected.

CONCLUSION

- Mean year value of the indoor radon level was 30.7 Bq/m³ ranging between 1 and 250 Bq/m³.
- In total, 5.9% (13 of the 221) homes had indoor radon levels exceeding 100 Bq/m³, all located in single-family terraced houses. Approx. 75% of homes exceeding 100 Bq/m³ indoor radon level had levels between 100 and 200 Bq/m³.
- Significant differences in indoor radon levels were found in homes located in multi-occupant houses.
- None of the other investigated variables explained the variation in indoor radon levels in homes. Variables were not significant characterising homes with a low radon concentration in rented accommodation, but seen to be variables that need to be further studied.

International Co-owners:

Thank you

