Evidence-Based Approach to Calibration of Whole Building Energy Model

Adrian Zhun Min Chong, Ph.D. Khee Poh Lam, Ph.D., FRIBA Weili Xu, Ph.D.

Organisers:

International Co-owners:

Global Alliance fee Buildings as Construction

Introduction

Background

- Originally intended for use during the design phase, building energy models (BEM) are increasingly used throughout a building's life-cycle
 - Support an energy auditor's recommendation for cost effective energy conservation measures (ECMs)
 - Measurement & Verification (M&V)
 - Coupling simulation with the building's control system and through continuous calibration, use the model to find an optimal control and response strategy

Background

- To ensure its reliability, model calibration has been recognized as an integral component to the overall analysis
- Bridge the gap between predicted and actual performance through measurements

Method

Model Evaluation

- CVRMSE (30%) and NMBE (10%) satisfies thresholds for hourly calibration data set by ASHRAE Guideline 14 (2002)
- Evaluate performance on a hold-out test dataset that was not used for the calibration
- Hourly time series plot comparing measured and simulated results

Case Study

Building Description

- 9th floor of an office building located in Japan
- Each zone (except core) installed with sensors that measure zone temperature, lighting power as well as plug and process power
- Data collection: 24th Jul 2015 to 24th Feb 2016 (1-min)
- Test data: Aug 2015 (summer), Nov 2015 (autumn) and Feb 2016 (winter)

HKGBC

CONSTRUCTION

ORLD Sustainable Built Environment Conference

INDUSTRY COUNCIL

浩業議會

Model Inputs North East North West 20 Fower [kW] Power [kW] Power [kW] .0 Time [Hour] Time [Hour] Time [Hour] South South East South West 2.0-Power [kW] [M] Jawoc Power [kW] Time [Hour] Time [Hour] Time [Hour]

Holida

Thursda

- Equipment Power
 - More distinct separation between weekdays
 - 24 hour schedule for Monday to Sunday and Holidays

Organisers: CONSTRUCTION IRDUSTRY COUNCIL 建造業議會 International Co-owners:

abal Allisace

ilding's and

Model Inputs

Parameter	Method used to compute parameter value	
Fan Total Efficiency	Average fan efficiency computed from air flow	
	measurements, fan power measurements and pressure	
	rise from manufacturer's specification	
Pressure Rise (Pa)	Manufacturer's specification	
Maximum Flow Rate (m3/s)	Maximum airflow rate that was measured	
Fan Power Minimum Air Flow Fraction	Ratio of minimum measured airflow rate to maximum	
	measured airflow rate	
Motor Efficiency	Given value of 1 since motor inefficiencies are	
	accounted for in measurements of airflow and power	
Coefficients of Fan Power Curve (Equation 4)	Least square regression using measurements of air	
	flowrate and fan power consumption. The independent	
	variable (f_{flow}) is derived from measured air flowrate as	
	the ratio of air flowrate to the maximum airflow rate.	
	The dependent variable ($f_{\it pl}$) was derived from	
	measured fan power consumption as the ratio of fan	
	power to the maximum fan power.	

$$f_{flow} = \frac{\dot{m}}{\dot{m}_{design}}$$

Organisers:

CONSTRUCTION INDUSTRY COUNCIL

$$f_{pl} = c_1 + c_2 \cdot f_{flow} + c_3 \cdot f_{flow}^2 + c_4 \cdot f_{flow}^3$$

$$\dot{Q}_{tot} = f_{pl} \cdot \dot{m}_{design} \cdot \frac{\Delta P}{e_{tot} \cdot \rho_{air}}$$

International Co-owners:

al Alliance huildings and

Results

Component	CVRMSE (%)	NMBE (%)
Lighting Energy Consumption	14.01	1.47
Equipment Energy Consumption	10.68	-0.005
AHU Energy Consumption	11.48	-2.35

Organisers: Construction INDUSTRY COUNCIL 建造業議會

HKGBC

International Co-owners:

Global Alliance For Buildings and

instructio

Zhun Min Adrian, Chong Department of Building National University of Singapore 4 Architecture Drive Singapore 117566 Email: bdgczma@nus.edu.sg

Thank you

International Co-owners:

