Review on Demand Control Ventilation

-Zheng Caidan, Wang Yuchen **Chongqing University**

Ways of ventilation

■ Ventilation rate procedure

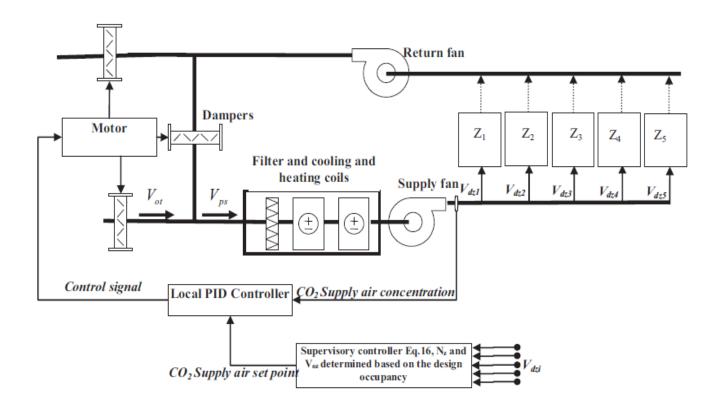
a minimum quantity of cfm per person based on maximum occupancy, i.e. 30 cfm per person

☐ Indoor air quality (IAQ) procedure

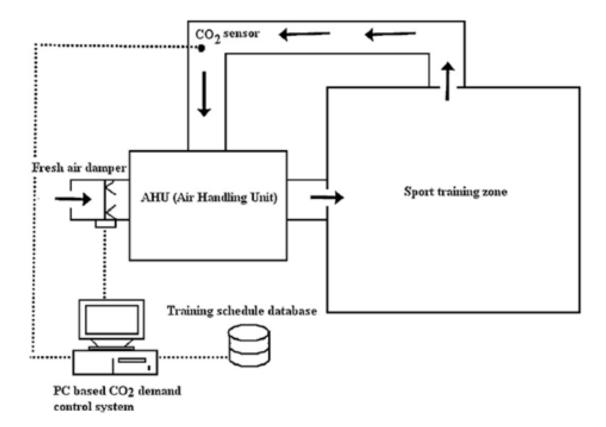
vary outdoor air ventilation rate (from 0% to 100% of the design outdoor air) as long as the pollutant concentration remains below a recommended level

Demand control ventilation

CO₂-DCV strategy



Control strategy with a typical VAV system



DCV-CO2 strategy

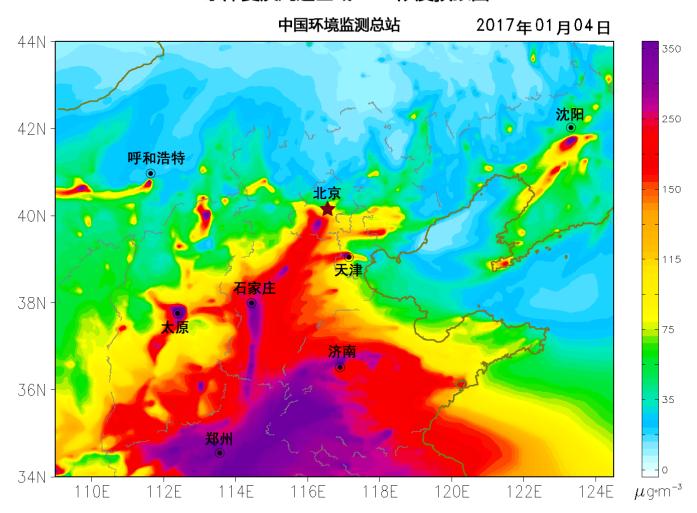
CO2-DCV strategy

Existing problem of CO₂-DCV

- 1. it cannot reflect the air volume requirement of buildinggenerated indoor pollutants
- 2. it will result in energy waste that inaccuracy in design ventilation rate
- 3. all strategies are operated under the assumption that it's enough clean for outdoor air

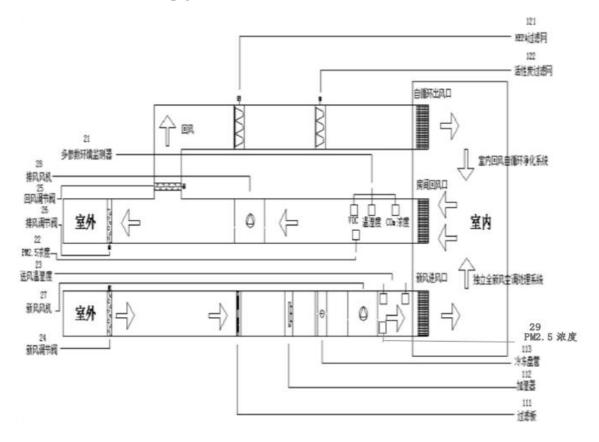
Table 1. IAO Control Indexes about Health

Table 1. 11 Q Collater Indones account realist				
Parameter type	Number	Species	Reference value	Note
Chemical	1	SO ₂ (mg/m ³)	0.5	1h mean value
	2	NO ₂ (mg/m ³)	0.24	1h mean value
	3	CO(mg/m ³)	10	1h mean value
	4	CO ₂ (%)	0.1	Day mean value
	5	NH ₃ (mg/m ³)	0.2	1h mean value
	6	O ₃ (mg/m ³)	0.16	1h mean value
	7	HCHO(mg/m ³)	0.1	1h mean value
	8	C ₆ H ₆ (mg/m ³)	0.11	1h mean value
	9	C7H8(mg/m³)	0.2	1h mean value
	10	C ₈ H ₁₀ (mg/m ³)	0.2	1h mean value
	11	B(a)P(mg/m ³)	1	Day mean value
	12	PM10(mg/m ³)	0.15	Day mean value
	13	TVOC(mg/m ³)	0.6	8h mean value
Biological	14	Colonies number (cfu/m³)	2500	Instrument measurement
Radiological	15	Rn (Bq/m³)	400	Year mean value



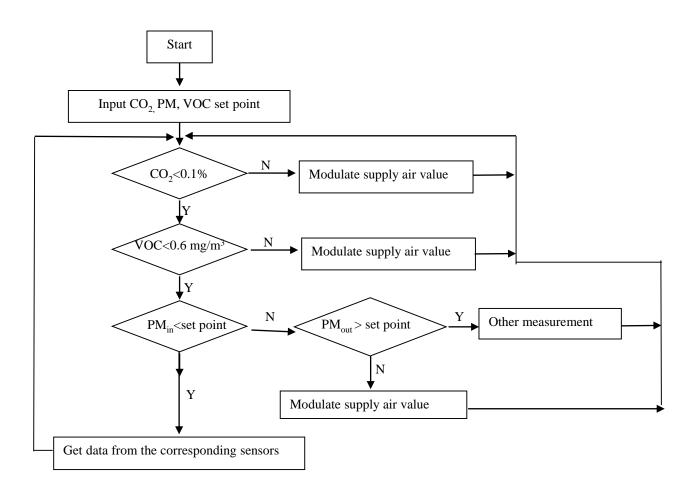
京津冀及周边区域PM2.5浓度预报图

New strategy about DCV



Implication of strategy

Control index: indoor VOC concentration, indoor PM concentration, indoor CO2 concentration, indoor humiture, outdoor PM concentration and outdoor humiture.



Control flow chart

Summary

- ☐ The strategy presented above is based on the assumption that the data detected by sensor is accurate and effective. However, it's difficult to achieve higher precision with development of sensor technology at present. It is necessary to develop a new type of sensor for measuring the concentration of VOC, PM and other pollutants.
- □ Single factor analysis is made for various pollutants with the consideration that they don't effect each other. However, the various pollutants are mutually influenced in fact, and the impact on the human has not been analyze completely. The comprehensive index of air pollution needs to be further studied.
- ☐ The strategy are based on the requirement of IAQ rather than energy saving, so the set point of pollutants is need to be discussed.

Thank you

