SYNOPSIS OF
LOW TEMPERATURE CHILLED CEILING

APPLICATION IN TROPICAL AND SUB-TROPICAL COUNTRIES

A CASE STUDY

By Ir Paul Y C Chan
Content

1. Radiant Cooling Design Principles

2. Case Study

2.1 Project Details

2.2 Client’s Brief

2.3 Design

2.4 Performance Results
1. Radiant Cooling Design Principles

Traditional AC design adopts convective heat transfer principle using air handling units or fan coil units recirculating room air to effect heat exchange (invented by American Dr. Willis H Carrier in 1902)

Convective Heat Transfer

\[Q = h \ A \ (T_s - T_f) \]

For Fluid

\[Q = \dot{m} \ C_p \ (T_1 - T_2) \]
This convective AC design has the following disadvantages:

• Whole volume of room air needs to be recirculated and cooled resulted in energy wastage and potential cross contamination

• Large plant rooms and massive air ducts are required

• Large fan & pump power are required

• Unsatisfactory Indoor Environmental Quality (usually high humidity and undercooled) during mild and humid seasons or at light load conditions

• Existence of uncomfortable cold draft and unevenness of air distribution

• Noisy due to fan operation and excessive supply air velocity

• Frequent attendance and maintenance are required e.g. filters/air ducts/drip pans cleaning, motor faults etc.
Radiant heat transfer occurs when objects temperature are above absolute 0 K.

According to Stefan Boltzmann Law:

\[
\text{Radiation } Q = \varepsilon \sigma A (T_r^4 - T_c^4)
\]

Note that in this formula, heat transfer will take place in the speed of light, irrelevant to the temperature of the medium and the distance between objects to a great extent is insignificant. The heat transfer is proportional in the 4\text{th} power of the difference in temperature of the objects, emissivity of the objects, area and the solid angle.
Heat transfer in the room space will be in form of ‘Hybrid Cooling’ in that both radiant and convective cooling process will take place via the PAU and chilled ceiling panels. In view of the low ventilation rate, radiant cooling will dominate to take up the room sensible heat load.

Total Heat Load \(Q_{\text{Total}} = Q_{\text{Solar}} + Q_{\text{ventilation}} + Q_{\text{Sensible}} + Q_{\text{Latent}} \)
This low temperature chilled ceiling system separates treatment of the ‘Latent Heat’ & ‘Sensible Heat’ loads of the environment.

Latent Heat:

Room humidity is kept below 55 % and controlled by a special primary air handling unit where outdoor air is treated to temperature as low as 11°C at 100 % saturation under the worse HK summer outdoor condition of 35°C 65 % that will greatly increase the dehumidification capability of the supply air.
Sensible Heat:

Part of the sensible heat is handled by the fresh air but the majority of this load is handled by the chilled ceiling by means of radiation heat transfer amongst all hot objects and cooled surfaces inside the room.

Surface temperature of the chilled ceiling will range from 16°C to 22°C depending on the room loading conditions and comfort control. Chilled ceiling panels are connected in series to form groups of panels to serve individual zones with separate comfort controls.

More energy efficient as sensible heat transfer to chilled ceiling:
- More targeted
- More effective
- Room ambient air temperature has less effect on comfort level so it can be elevated and save energy
• Room relative humidity will be kept at 55% or below to avoid condensation on chilled ceiling panels. Chilled water will be controlled by a dew point sensor to cut off water supply when panel surface temperature reaches 16°C or below.

• Room CO₂ level will be kept at 800 ppm or below using variable speed drive primary air units

• Room CO₂ level/humidity level, room temperature and chilled ceiling panel temperature sensors will be installed to facilitate control of the chilled ceiling system.

• Many factors will affect ceiling coverage design of chilled ceiling panels such as façade design, heat sources (human, lighting & equipment etc.) and building usage type. In general chilled ceiling coverage of around 40 to 55% should be sufficient to handle sensible load in most cases.
2. A Case Study – HK Hang Seng Bank at MongKok Regional HQ

2.1 Project Details

This is a renovation of an existing office building to a high performance modern Bank Regional Headquarters.

Details of the building 113-115, Argyle Street, MongKok, HK. completed in 1996, with limited floor to floor headroom of 3000 mm, 23 floors of office and other supporting floors.

<table>
<thead>
<tr>
<th>Details</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Floor Area</td>
<td>Approximately 30,100 m² and typical floor plate is around 900m²</td>
</tr>
<tr>
<td>Site Area</td>
<td>2,000 m²</td>
</tr>
<tr>
<td>Total Population</td>
<td>Max. 110 persons/floor (approx. 3,000 people in total after completion)</td>
</tr>
<tr>
<td>Building envelope</td>
<td>Curtain Wall, Tinted Glass with Single Glazing</td>
</tr>
<tr>
<td>E&M Provision</td>
<td>Air Conditioning — 1350TR (4750kW) Installed Capacity</td>
</tr>
<tr>
<td></td>
<td>Electrical Services — 4 nos. of 1500KVA Transformers</td>
</tr>
<tr>
<td></td>
<td>Fire Services — Full sprinkler protected</td>
</tr>
<tr>
<td></td>
<td>Lift Services — 7 nos. of Passenger Lift</td>
</tr>
</tbody>
</table>
Typical Floor Plan
Section of the Building

Floor to Floor Height 3000mm
2.2 Client’s Brief

Hang Seng Bank intends to renovate the existing building into a grade A regional office building to accommodate staff relocated from various Kowloon sites. An open plan workplace modelling approach had been adopted as the basis of interior design layout

• To achieve a clear office ceiling height of 2400 mm
• To provide a 90 mm raised floor for power & communication cable containment
• To achieve a minimum of ‘LEED’ Gold certification
• Energy saving MEP design and yet to achieve a highly comfortable and healthy Indoor Environmental Quality
• Flexible workplace concept
2.3 Design

Chilled Ceiling layout Plan

LEGEND

- Chilled Ceiling Panel (Coverage 45%)
- Fan Coil Unit
- Primary Air Handling Unit

Chilled Ceiling Panel at Open Plan Office

Chilled Ceiling Panel at Meeting Room
Proposed Chilled Ceiling Grouping

Chilled Water Inlet

Dew Point Temperature Sensor

Chilled Ceiling Panel connected in Series

Chilled Water Outlet
Protection for Condensation
• Chilled ceiling panel surface temperature will be set 2 °C above the dew point temperature of the corresponding zone. Chilled water supply to panel will be cut off when panels temperature reach this setting.

Free Cooling Mode
• Free cooling will be performed when the outdoor dew point temperature below 14 °C and resume normal control when outdoor dew point temperature above 16 °C
Typical ceiling section

- Flat Slab 250mm
- Limited M&E Space 220mm
- New False Ceiling Height 2400mm
- Floor to Floor Height 3000mm
- Raised Floor 90mm
- M&E Space
Existing Site Constraints

- Floor to Floor: 3000mm (Under Slab: 2750mm)
- Drop Slab thickness: 375mm
- Flat Slab thickness: 250mm
This thermo graphic image shows the surface temperature of two different types Radiant Ceiling panel under load condition. Hence it can be seen that the low temp chilled ceiling has a much better cooling performance than other radiant cooling products in that it can maintain even low temperature for a large portion of the radiant area.
Thermography Images for Typical Office Ceiling

Low Temperature Chilled Ceiling
Low Temperature Chilled Ceiling Construction Details

- Aluminum Foil
- Thermal Insulation
- Aluminum Sheet wrapping on chilled water pipe ‘A’
- Aluminum Ceiling Panel ‘B’
- Proprietary Insulation Material
- Chilled Water Copper Pipe

Ceiling Panel ‘A’ is “Chilled” via radiation heat transfer with ‘B’
Risks and Limitations

1. Rely on sensor setting and performance
 • Regular sensor calibration is required

2. Less Air Movement
 • Heat transfer by means of radiation

3. No Validated Standard for Cooling Load Calculation
 • No simulation tools for radiant cooling system
 • Only refer to project reference
2.4 Performance Results

Original Office Condition using convectional AC (Fan Coil) Design

New Office Condition using radiant cooling (Chilled Ceiling) Design

2200mm Ceiling Height

2400mm Ceiling Height

90mm Raised Floor
Completed Hang Seng Argyle 113 Office
Completed Hang Seng Argyle 113 Office
Merits of radiant cooling compared with convective cooling

Less Temperature Stratification

Fan coil unit system

Local cold and hot spots are found with a fan coil unit system.

Chilled ceiling system

Temperature is more consistent and evenly distributed with a chilled ceiling system.
Absence of Cold Drafts & Better Thermal Comfort

Fan coil unit system

Local cold drafts are found in a fan coil unit system. (excessive heat loss)

Chilled ceiling system

Absence of cold drafts result in better thermal comfort for occupants.
Occupant Comfort Survey (based on PMV method of Assessment)
Analytical Comfort Zone Method

ASHRAE Thermal Sensation Scale

<table>
<thead>
<tr>
<th>Time</th>
<th>Cold</th>
<th>Cool</th>
<th>Slightly Cool</th>
<th>Neutral</th>
<th>Slightly Warm</th>
<th>Warm</th>
<th>Hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 pm</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3:00 pm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>4:00 pm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Survey Results

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 pm</td>
<td>S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12</td>
</tr>
<tr>
<td>3:00 pm</td>
<td>S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12</td>
</tr>
<tr>
<td>4:00 pm</td>
<td>S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12</td>
</tr>
</tbody>
</table>
Cooling Load at Different Outdoor Conditions

<table>
<thead>
<tr>
<th>Outdoor conditions</th>
<th>:</th>
<th>35 °C (DB), 29 °C (WB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>:</td>
<td>110 person</td>
</tr>
<tr>
<td>Fresh air flow rate</td>
<td>:</td>
<td>10 l/s/person</td>
</tr>
</tbody>
</table>

Single glazing façade with 0.85 shading coefficient

<table>
<thead>
<tr>
<th>Design Fresh Air Load</th>
<th>:</th>
<th>75 kW (~40 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Sensible Heat Load</td>
<td>:</td>
<td>100 kW (~60 %)</td>
</tr>
<tr>
<td>Design Total Load</td>
<td>:</td>
<td>175 kW</td>
</tr>
</tbody>
</table>
Case 1: Free Cooling at 27 Nov, 2015 at 15:30 – a typical HK Autumn condition

<table>
<thead>
<tr>
<th>Outdoor condition</th>
<th>20.0 °C, 40% RH (Population 72 person)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAU Total Load</td>
<td>0 kW</td>
</tr>
<tr>
<td>Chilled Ceiling Total Load</td>
<td>2 kW</td>
</tr>
<tr>
<td>Total Load</td>
<td>2 kW</td>
</tr>
</tbody>
</table>

Case 2: Cooling at 26 Aug, 2016 at 16:26 – a typical HK summer condition

<table>
<thead>
<tr>
<th>Outdoor condition</th>
<th>32.6 °C, 67% RH (Population 72 person)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAU Total Load</td>
<td>60 kW</td>
</tr>
<tr>
<td>Chilled Ceiling Total Load</td>
<td>22 kW</td>
</tr>
<tr>
<td>Total Load</td>
<td>82 kW</td>
</tr>
</tbody>
</table>
Merits of Chilled Ceiling versus Conventional AC systems

VAV/ AHU System
- Space Temperature 23°C ± 1°C
- Relative Humidity 55 % - 70 %
- Heating/ Cooling Both but not common/ not well accepted
- CO₂ Concentration Average 900-1000 ppm
- Recirculation Air 80 %
- Acoustic Medium NC 38
- Air Draft Problem Exist
- Temperature Uniformity Average

Fan Coil System
- Space Temperature 23°C ± 1°C
- Relative Humidity 60 % - 75 %
- Heating/ Cooling Both but not common/ not well accepted
- CO₂ Concentration Average 1000-1400 ppm
- Recirculation Air 80 to 90 %
- Acoustic Noisy NC 40 average
- Air Draft Problem Exist
- Temperature Uniformity Fluctuating

Chilled Ceiling System
- Space Temperature 23°C - 27°C
- Relative Humidity 50 % - 55 %
- Heating/ Cooling Both and relatively comfortable
- CO₂ Concentration Average 600 ppm
- Recirculation Air Flexible and can be full fresh air
- Acoustic Extremely quiet typical under NC35
- Air Draft Problem Very minimum
- Temperature Uniformity Very Even
Merits of Chilled Ceiling versus Conventional AC systems

VAV/ AHU System
Energy Performance
• Cooling Load Calculation (Office) 200 W/m²
• Water Pump Power ‘A’ kW
• Air Fan Power ‘B’ kW
Operation and Maintenance
• Ease of Operation Complicated
• Maintenance Cost High
Plant Spatial Requirement
• Capital Cost High
• Running Cost High

Fan Coil System
Energy Performance
• Cooling Load Calculation (Office) 180 W/m²
• Water Pump Power ‘A’ kW
• Air Fan Power 40% of ‘B’ kW
Operation and Maintenance
• Ease of Operation Less Complicated
• Maintenance Cost High
Plant Spatial Requirement
• Capital Cost Low
• Running Cost Medium

Chilled Ceiling System
Energy Performance
• Cooling Load Calculation (Office) 100 W/m²
• Water Pump Power 75% of ‘A’ kW
• Air Fan Power 25% of ‘B’ kW
Operation and Maintenance
• Ease of Operation Medium Complicated Complicated
• Maintenance Cost Low
Plant Spatial Requirement
• Capital Cost Medium(due to limited Suppliers)
• Running Cost Low

VAV/ AHU / Fan Coil System
Summary of Comparison (for a Typical 1000 sq. m Office)

<table>
<thead>
<tr>
<th>Item</th>
<th>Chilled Ceiling System</th>
<th>VAV System</th>
<th>Fan Coil System</th>
<th>Chilled ceiling vs VAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU/ PAU Room Space</td>
<td>15m2</td>
<td>40 m2</td>
<td>-</td>
<td>Around 63 % Saving</td>
</tr>
<tr>
<td>Ceiling Void Space</td>
<td>250mm</td>
<td>650 mm</td>
<td>400mm</td>
<td>Around 60 % Saving</td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Adjust Panel Surface Temperature</td>
<td>Adjust Supply Air temp and volume</td>
<td>Adjust Supply Air temp and volume</td>
<td>-</td>
</tr>
<tr>
<td>Energy Consumption</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Around 40% Saving (+ 50 % if pump and fan power are included)</td>
</tr>
<tr>
<td>Acoustic Performance</td>
<td>Excellent</td>
<td>Good</td>
<td>Poor</td>
<td>-</td>
</tr>
<tr>
<td>Room Temperature</td>
<td>23 °C – 27 °C</td>
<td>22 °C to 25 °C</td>
<td>22 °C to 25 °C</td>
<td>-</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Energy Performance

Energy consumption in a typical office building

Energy consumption in a office building using chilled ceiling system & LED

Hong Kong’s energy end-use distribution
Energy Performance

Cooling load profile in typical hot and humid summer day

- CC
- PAU
- FCU system
- RH
- Actual OD Temp
- FCU OD Temp
Annual Energy Consumption for a Typical 1000 sq.m Office Floor

<table>
<thead>
<tr>
<th>Cooling Energy in 2016 (kWh)</th>
<th>Total</th>
<th>Chilled Ceiling (Actual)</th>
<th>FCU (Simulation)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>184,500</td>
<td>422,000</td>
</tr>
</tbody>
</table>

*simulated result by Hourly Analysis Program (E20)
Energy Performance

Energy Performance – Energy Utilization Index

Building Energy Utilization Index (EUI)

- A valuable index to manage energy usage
- Compare the whole-building energy use to other similar buildings
- Used for individual energy audits

Annual Energy Utilization Index (EUI) =
(Unit of EUI = kWh/m²/annum)

Total annual energy consumption of the central building services installations in a building

Total internal floor area* of the building.

<table>
<thead>
<tr>
<th></th>
<th>Annual Energy Consumption per Area EUI (kWh/m²/annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Office (Multiple tenants)</td>
<td>132</td>
</tr>
<tr>
<td>Typical Office (Single tenants)</td>
<td>279</td>
</tr>
<tr>
<td>Hang Seng Office (Single tenants, Chilled Ceiling)</td>
<td>156</td>
</tr>
</tbody>
</table>

*Total Internal Floor Area (IFA)
- The area of all enclosed space of the unit measured to the internal face of enclosing walls
- Commonly known as Construction Floor Area (CFA) in HK
Energy Consumption for Whole Building

<table>
<thead>
<tr>
<th></th>
<th>Hang Seng 113 (Actual)</th>
<th>Hang Seng 113 LEED (Baseline)</th>
<th>EMSD Typical Single Tenants</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC System</td>
<td>Chilled Ceiling</td>
<td>LEED Baseline (FCU)</td>
<td>-</td>
</tr>
<tr>
<td>EUI (kWh/m²/annum)</td>
<td>156</td>
<td>247*</td>
<td>279</td>
</tr>
<tr>
<td>HOT (MPP113) Internal Floor Area (m²)</td>
<td></td>
<td></td>
<td>33472</td>
</tr>
<tr>
<td>Annual Energy Consumption (kWh/annual)</td>
<td>5,221,000</td>
<td>8,254,000</td>
<td>9,339,000</td>
</tr>
<tr>
<td>Electricity Tariff Saving (HK$ 1/kWh)</td>
<td>-</td>
<td>HK$ 3,033,000</td>
<td>HK$ 4,118,000</td>
</tr>
</tbody>
</table>

Use simulated data for comparison
Opportunities of Low Temperature Chilled Ceiling

Skyscraper Ping An International Finance Centre
2nd Tallest building in China (Shenzhen)
4th in the World

- Floor to Floor Height: 4500 mm
- False Ceiling: 3150 mm
- MEP Ceiling Space + Structure: 1350 mm
- AC Cooling Capacity: 13000 TR
- AC Plant Room: 2000 m2
- Typical floor AHU room: 4 x 80 m2
Central chiller plant can be significantly reduced and relocated to less valuable basement floors that eases maintenance and operation.

Same height of the building but office false ceiling height can be increased by 350 mm
Scenario 2

45m Reduction in Building Height

Same false ceiling height but overall building height can be reduced and save construction cost

600 m

555 m

0 m

AC Plant
Scenario 3

Same height but approximately 10 more office floors can be built with the same false ceiling height.

AC Plant
With the adoption of low temperature chilled ceiling design, the bulky AHU rooms for conventional VAV system will be disappeared.

- GFA 3900m²
Opportunities of Low Temperature Chilled Ceiling

Hospital Projects

• Silent Operation
• Excellent Indoor Air Quality
• Energy Conservation
• Flexibility in Separation of Fresh Air Treatment
• 100% fresh Air Supply
• Even Temperature No Draft
• Easy Changeover to Heating / Cooling
Infrastructure Projects

- Suitable for High Space Large Volume Environment
- Excellent Indoor Air Quality
- Energy Conservation
- Much adopted to free cooling
- Easy Changeover to Heating / Cooling
• Office
• Hotel
• Academic Buildings & Student Hostel
• Exhibition/ Convention Area
• Luxurious Residential Development
• Industrial Undertaking and Factories
THANK YOU