Retro-commissioning Practice and In-depth Analysis: Case Study on A Retail Mall in China

Author:
Li Wenpeng, Zhang Ye, Tsinghua University
Raymond Yau, YS So, Kong Wen Ping, Jean Qin
Swire Properties Ltd.

Speaker: Jean Qin, Swire Properties Ltd.
Background
Challenge: Multi-discipline

Owner

Designer

Manufacturer

T&C Executors

Contractor

Operator

Government departments
Challenge: Limited Budget and Tight Schedule

Stringent Regulations vs. “Loose” Implementation

No separate budget for T&C

Tight Schedule

- Owner: Schedule for Opening
- Contractors/Consultants: Eager to leave
Common Problems

T&C requirements were not fully understood during the design stage
T&C facilities were not installed
No space reserved for T&C
Technical data / catalogues outstanding
Retro-commissioning Process

Level 1
- Equipment performance commissioning
 1. Testing on the performance of major equipment (chiller, pump, cooling tower, boiler, air-side equipment, etc.)
 2. Commissioning under part-load conditions

Level 2
- System performance commissioning
 1. Commissioning for system balance
 2. Commissioning for terminal devices
 3. Pressure distribution measurement of water systems
 4. Commissioning for system control performance

Level 3
- Annual operation commissioning
 1. Whole year heating & cooling system control and BMS performance
 2. Whole year energy pattern analysis and saving opportunities identification

Retro-commissioning process
Commissioning process

Organisers: CONSTRUCTION INDUSTRY COUNCIL, HKGBC, SBE SERIES, iiSBE
International Co-owners: Global Alliance for Buildings and Construction
A Retail Mall: Sino-ocean Taikoo Li Chengdu
Historical Buildings
Energy Study During Design

- Whole year heating/cooling load simulation
- Heating/Cooling source: life cycle analysis – central plant/de-central plant/ice storage/tri-gen system
- Jet-fan and CO level control for car-park ventilation
- Primary variable flow chilled water system
- Cooling tower free cooling
- Fresh air free cooling and demand control
- Energy recovery wheel life cycle analysis
- Microclimate analysis
HVAC Systems

- Cooling

- Heating
Level 1: Equipment Performance Commissioning
<table>
<thead>
<tr>
<th>Equipment performance commissioning</th>
<th>Testing object</th>
<th>Testing Parameters and evaluation index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COP of chiller, capacity and efficiency of boiler, efficiency of cooling tower</td>
<td>Measure the COP of the chiller at the rated flow, rated supply/return water temperature. Measure boiler gas consumption, water flow, supply/return water temperature. Evaluate the output and efficiency of the boiler. Measure the supply/return water temperature, flow of water and air, operation power of the cooling tower, etc. Evaluate the efficiency of the cooling Tower.</td>
</tr>
<tr>
<td></td>
<td>Performance of pump (CHW pump, condensing water pump, hot water pump)</td>
<td>Measure the pump head, power under different flow rate, calculate the efficiency of the pump, make the flow-efficiency, flow-pressure, flow-power curve of the pump.</td>
</tr>
<tr>
<td></td>
<td>Efficiency of plate heat exchanger (hot water and free-cooling)</td>
<td>Measure flow rate and supply/return water temperature of plate heat exchanger, evaluate the efficiency of plate heat exchanger.</td>
</tr>
<tr>
<td></td>
<td>Performance of air-side equipment (primary air unit, air handling unit, fan)</td>
<td>Measure air flow, air pressure, operation power, supply air temperature, evaluate the performance of air-side equipment.</td>
</tr>
</tbody>
</table>
Pumps

<table>
<thead>
<tr>
<th>Pump</th>
<th>Flow (m³/h)</th>
<th>Head (mH₂O)</th>
<th>Power (kW)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1100</td>
<td>41</td>
<td>160</td>
<td>88.8</td>
</tr>
</tbody>
</table>

Graphs showing measured and specified performance characteristics.
Chillers

Chiller No. 3

Chiller No. 4

Chiller No. 6
Cooling Towers

Before

After
Level 2: System Performance
Commissioning
System performance commissioning

Testing object

- Hydraulic balance testing for main equipment of the heating & cooling system
- Pump commissioning under operating conditions
- Water system pressure measurement
- Balancing valve commissioning
- Air balance

Testing Parameters and evaluation index

- Measure the flow rate of each equipment and adjust the pumps to the reasonable flow.
- Adjust the group of pumps in parallel to the operating conditions by the valve adjustment or the control of VSD.
- Measure the pressure of the critical points of the system, discover unreasonable resistance.
- Balancing all water loops by operating the balance valve.
- Balancing the branches by adjusting the dampers provided. Each air diffuser needs to be measured to obtain the required air flow.
Unreasonable Resistance
Free Cooling

Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design</th>
<th>Trial Free Cooling Operation</th>
<th>Trial Chiller Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Temperature (°C)</td>
<td>11.0</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>Inlet Temperature (°C)</td>
<td>8.0</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>Flow rate (m³/h)</td>
<td>1432.0</td>
<td>1393.0</td>
<td></td>
</tr>
<tr>
<td>Cooling Load (kW)</td>
<td>4996.2</td>
<td>1021.1</td>
<td>1021.1</td>
</tr>
<tr>
<td>Chiller (kW)</td>
<td>0</td>
<td>0</td>
<td>145.9</td>
</tr>
<tr>
<td>Cooling Tower (kW)</td>
<td>88.6</td>
<td>88.6</td>
<td>45.0</td>
</tr>
<tr>
<td>Pump (kW)</td>
<td>229.9</td>
<td>229.9</td>
<td>15.0</td>
</tr>
<tr>
<td>System COP</td>
<td>15.7</td>
<td>3.2</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Level 3: Dynamic Operation Commissioning
Annual system operation commissioning and reconstruction

T&C Stage Object Testing Parameters and evaluation index

Heating & cooling system control
- Check the strategy, interface, functionality, accuracy of sensor.

BMS system
- Check the completeness of the user control strategy, interface and control function. Check the accuracy of sensors and the realization of control function.

Efficiency operation strategy for heating & cooling system
- Research on outlet chilled water temperature setting, operation strategy of cooling tower, pressure differential of chilled water setting, collocation of large & small chillers, etc.

Efficiency operation strategy for air-side System
- Research on operating strategy of primary air unit, air handling unit and fine-tune the set-points.

Energy-saving reconstruction
- Executing energy-saving reconstruction of equipments and systems by In-depth operation data mining.

Energy-saving reconstruction

Annual system operation commissioning and reconstruction

combination
Chiller Sequencing Control

<table>
<thead>
<tr>
<th>CT Operating Hz</th>
<th>Chillers ON</th>
<th>Cooling Towers ON</th>
<th>CT Operating Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
BMS Function of Control Valves

- northeast loop
- northwest loop
- southwest loop
- cinema loop
- central loop 1
- central loop 2

- 10:00-22:00
- 22:00-1:00
- 6:30-10:00

Shop

Riser

FCU

FCU

FCU
Conclusion
Energy Saving

![Energy Saving Chart]

- Fresh air demand control: 337 MWh/Year
 - Year 2016 Saving: 169 MWh/Year
 - Year 2017 Saving: 178 MWh/Year
- CT control improvement: 281 MWh/Year
 - Year 2016 Saving: 121 MWh/Year
 - Year 2017 Saving: 160 MWh/Year
- Condensing pumps VSD retrofitting: 130 MWh/Year
 - Year 2016 Saving: 89 MWh/Year
 - Year 2017 Saving: 41 MWh/Year
- Check valve replacement: 89 MWh/Year
 - Year 2016 Saving: 54 MWh/Year
 - Year 2017 Saving: 35 MWh/Year
- Better control of zone valves: 39 MWh/Year
 - Year 2016 Saving: 29 MWh/Year
 - Year 2017 Saving: 10 MWh/Year
Big Data Analysis

2. Total Electricity Consumption Breakdown
 (a) Total
 Yr. 2015
 4.2% 11.5% 41.1%
 30.9% 24.3% 48.2%
 Yr. 2016
 4.0% 11.0% 48.2%
 30.9% 24.3% 48.2%

 (b) Mall
 Yr. 2015
 4.5% 12.2% 43.6%
 28.0% 22.2% 10.3%
 Yr. 2016
 4.3% 11.8% 51.5%
 28.0% 22.2% 10.3%

4. Electricity Consumption Breakdown for Each Portfolio
 - AC Package Unit (Compressor Unit + Water Pump + Cooling Tower)
 - AC Air-Side
 - Lighting and Small Power (Mall + Carpark + Event Show + Exterior)
 - Lift and Escalator
 - Others

 Notes:
 (a) Negative value implies reduction/saving.
 (b) AC Air-Side includes air distribution and mechanical vents.
 (c) Lighting and Small Power includes lighting and small power.
 (d) Others includes plumbing and drainage system and fire system.

 - AC Water Side
 - AC Air-Side
 - Lighting and Small Power (Mall + Carpark + Event Show + Exterior)
 - Lift and Escalator
 - Others

 Notes:
 (a) Negative value implies reduction/saving.
 (b) AC Air-Side includes air distribution and mechanical vents.
 (c) Lighting and Small Power includes lighting and small power.
 (d) Others includes plumbing and drainage system and fire system.

 - AC Package Unit (Compressor Unit + Water Pump + Cooling Tower)
 - AC Air-Side
 - Lighting and Small Power (Mall + Carpark + Event Show + Exterior)
 - Lift and Escalator
 - Others

 Notes:
 (a) Negative value implies reduction/saving.
 (b) AC Air-Side includes air distribution and mechanical vents.
 (c) Lighting and Small Power includes lighting and small power.
 (d) Others includes plumbing and drainage system and fire system.

 - AC Water Side
 - AC Air-Side
 - Lighting and Small Power (Mall + Carpark + Event Show + Exterior)
 - Lift and Escalator
 - Others

 Notes:
 (a) Negative value implies reduction/saving.
 (b) AC Air-Side includes air distribution and mechanical vents.
 (c) Lighting and Small Power includes lighting and small power.
 (d) Others includes plumbing and drainage system and fire system.

 - AC Package Unit (Compressor Unit + Water Pump + Cooling Tower)
 - AC Air-Side
 - Lighting and Small Power (Mall + Carpark + Event Show + Exterior)
 - Lift and Escalator
 - Others

 Notes:
 (a) Negative value implies reduction/saving.
 (b) AC Air-Side includes air distribution and mechanical vents.
 (c) Lighting and Small Power includes lighting and small power.
 (d) Others includes plumbing and drainage system and fire system.

 - AC Water Side
 - AC Air-Side
 - Lighting and Small Power (Mall + Carpark + Event Show + Exterior)
 - Lift and Escalator
 - Others

 Notes:
 (a) Negative value implies reduction/saving.
 (b) AC Air-Side includes air distribution and mechanical vents.
 (c) Lighting and Small Power includes lighting and small power.
 (d) Others includes plumbing and drainage system and fire system.
Life Cycle Management

Adopt a holistic standard process in managing the life cycle of the building

- Seamless Takeover
 - T&C, QA/QC & Documentation
- New Project
- Handover
- Operating Buildings
- Integrated Design Approach
- Continuous Improvement
 (Knowledge-based energy management)
- Design feedback / Operating experience input
Thank you