Life Cycle GHG Emissions of Material Use in the Living Laboratory

Marianne Kjendseth Wiik, Aoife Houlihan Wiberg

marianne.wiik@sintef.no aoife.houlihan.wiberg@ntnu.no

International Co-owners:

Background

The Research Centre on Zero Emission Buildings

nZEB pilot projects

Living Laboratory

Method

- Goal: To identify which materials and components contribute the most to embodied CO_{2ea} emissions in the Living Laboratory.
- Life Cycle Assessment (LCA) according to ISO 14044.
- Functional Unit: 'emissions per 1m² of heated floor area per year of operational building lifetime.'
 - Heated floor area: 102m²
 - Building lifetime: 60 years
- Material inventory gathered from architect's drawings, product literature and through on-site observations.

Method

- System boundary defined according to EN 15978.
- NS 3451: 2009 Table of Building Elements.

A1-3 Product Stage			A4-5 Construction Process Stage		B1-7 Use Stage							C1-4 End of Life			
A1: Raw Material Supply	A2: Transport to Manufacturer	A3: Manufacturing	A4: Transport to building site	A5: Installation into building	B1: Use	B2: Maintenance (incl. transport)	B3: Repair (incl. transport)	B4: Replacement (ind. transport)	B5: Refurbishment (incl. transport)	B6: Operational energy use	B7: Operational water use	C1: Deconstruction / demolition	C2: Transport to end of life	C3: Waste Processing	C4: Disposal
X	x	x	x	x				x							

Results

Life Cycle Stage	kgCO _{2eq}	kgCO _{2eq} /yr	kgCO _{2eq} /m ² 60 years	kgCO _{2eq} /m²/yr	
Production phase (A1-A3)	74,121	1,235	727	12.1	
Transport to Site (A4)	6,188	103	61	1.0	
Construction (A5)	7,412	124	72	1.2	
Replacement (B4)	56,067	934	550	9.2	
TOTAL	143,788	2,396	1,410	23.5	

- 50% of total emissions from the production phase.
- 40% of total emissions from the replacement phase.
- 5% of total emissions from transport to site.
- 5% of total emissions from the construction phase.

Sensitivity of Functional Unit

AREA

Heated floor area: 102m² $23.5 \text{ kgCO}_{2\text{eq}}/\text{m}^2/\text{yr}$

Gross floor area: 132m² $18.2 \text{ kgCO}_{2\text{eq}}/\text{m}^2/\text{yr}$

Net floor area: 97m²

 $24.7 \text{ kgCO}_{2\text{eq}}/\text{m}^2/\text{yr}$

Built up area: 219m²

 $10.9 \text{ kgCO}_{2\text{eq}}/\text{m}^2/\text{yr}$

BUILDING LIFETIME

Design Driver: High Emissions

25% total emissions from roof 20% from BAPV

Design Driver: Low Emissions

40% reduction in material use 20% reduction in emissions

As-built

Material Emission Balance

65% of total embodied material emissions are compensated for by local PV energy production.

Discussion

- The foundations experience a 40% material reduction and 20% emission reduction. This may be reduced with low carbon concrete.
- Materials with long reference service lives (RSLs) have high emissions during the production phase, whilst materials with short RSLs, have high emissions during the replacement phase.
- The emission balance shows that further measures are required to reduce material emissions and increase local energy production.
- The roof and BAPV contribute to almost half of emissions. Further research could investigate a BIPV solution instead, which uses a less elaborate roof form.
- The Living Laboratory is a temporary building with a short building lifetime. Thus, focus on recyclability and demountability.

Conclusion

- This study has identified which materials and components contribute the most to embodied emissions in the Living Lab.
- It highlights methodological and design considerations:
 - The functional unit is sensitive to definition of area and lifetime.
 - A complex roof form and PV led to high embodied emissions.
 - An concrete omission in the foundations led to a reduction in embodied emissions.
- It also provides alternative solutions for low carbon design.
 - For example, the sensitive use of PCM and VIP.
- Material optimisation should be considered at an early stage in the design process to reduce embodied material emissions.

Thank you

