Embedding Sustainability in Higher Education Course Content: The Industry Perspective

Professor Lloyd Scott
Dublin Institute of Technology

World Sustainable Built Environment Conference 2017 Hong Kong

Transforming Our Built Environment through Innovation and Integration:

Putting Ideas into Action
5-7 June 2017
Introduction

- Context
- Background to research
- Research approach
- Research Findings
- Analysis
- Recommendations
- Future work
Sustainability

What is it?

Lay people

BE professionals

Consumers

Clients

Policy makers

Educators
Sustainability

Means different things to different people.
The Making of the Wrong Decision is Very Powerful

“In light of the very recent announcement on Paris Agreement by the US President

“Education is an important Element in addressing sustainable development”
Common Reasons for Inaction identified

• A view that... Climate change is not happening
• It is, but it is overstated
• We (what ever country) are only a tiny part of the problem
• It is important, and something should be done but...
 • The government should fix it
 • Technology will save us
 • The market will rectify the problem
 • Other polluters (China, US etc.) go first
 • Why should I do something if others don’t
 • The problem is too big for me to influence
 • I would act, but don’t like any of the low carbon choices
Common Reasons for Inaction identified

• A view that... Climate change is not happening
• It is, but it is overstated
• We (what ever country) are only a tiny part of the problem
• It is important, and something should be done but...
 • The government should fix it
 • Technology will save us
 • The market will rectify the problem
 • Other polluters (China, US etc.) go first
 • Why should I do something if others don’t
 • The problem is too big for me to influence
 • I would act, but don’t like any of the low carbon choices

Just could not be bothered!!!
Context – is very important

- BE education
- Stakeholders
- Clients
- AEC sector
The context - continued

- Higher Education
- University approaches
- Approach to program development
 - Embedded across program(s)
 - Stand alone
- Professional status of programs
- Accreditation
Embedding Sustainability into BE Curricula: Sample themes

- **Energy**
 - Generation, utilisation, efficiency

- **Buildings**
 - Healthy, comfortable, fit for purpose, energy efficient, alternative energy, natural materials

- **Transport**
 - Energy efficiency, alternative technologies & energy

- **Natural Environment**
 - Biodiversity, treatment of contaminated land, flood prevention, energy crops, food crops, green cities

- **Technology Innovation**
 - Alternative energy, products for a circular economy, sustainable building technologies

- **Social Development**
 - Impact of climate change and fuel costs on society

- **Business Innovation**
 - Low carbon operations, products and services for a circular economy
The context - continued

• AEC sector
• What the sector expects from graduates
 • Industry ready (complete)
 • Soft skills
 • Adaptability
 • Cutting edge knowledge/practices
The research questions

• So what is the issue
 • AEC sector makes the point that graduates:
 • “do not have the required skill, knowledge and competence when it comes to sustainability”

• Aims of research
 • There is a need to investigate what the AEC sector considers as an appropriate level of knowledge, skill and competence wrt to sustainability
 • What is it that BE higher education is doing to prepare graduates to have the required level of K, S and C around sustainability.
Scope of research – ongoing research project

Create a framework that will support and enhance the education of the future AEC professionals in the area of sustainability.
Research method

• Mainly quantitative survey instrument used with a series of closed questions
• One open question –
 • what they believed was omitted in BE undergraduate programs
• Respondents asked to indicate if they would be willing to take part in a follow interview/ focus group

• Some 312 responses representing design and construction professionals across 15 countries.
• 97% of data was deemed reliable
• Data was acceptable for analysis

• Ethical approval was sought and approved
Comparison between industry and educators

<table>
<thead>
<tr>
<th>Essential Sustainability Knowledge</th>
<th>Industry Expectations</th>
<th>Actual Inclusion in Education</th>
<th>Diff. in Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank</td>
<td>Rank</td>
<td></td>
</tr>
<tr>
<td>Biomimicry</td>
<td>1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Green building construction means and methods</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Climate change</td>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Green buildings products and materials</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Life cycle cost analysis of green buildings</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Principles of green building construction</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Green building rating systems</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Building codes related to green technology</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Green building design process</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>
Comparison on feedback on Rating systems used

<table>
<thead>
<tr>
<th>Rating Systems</th>
<th>Industry Feedback</th>
<th>Actual Implementation in Education</th>
<th>Diff. in Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq.</td>
<td>Rank</td>
<td>Freq.</td>
</tr>
<tr>
<td>LEED</td>
<td>70%</td>
<td>1</td>
<td>88%</td>
</tr>
<tr>
<td>BREEAM</td>
<td>31%</td>
<td>2</td>
<td>30%</td>
</tr>
<tr>
<td>Green Globes</td>
<td>2%</td>
<td>3</td>
<td>13%</td>
</tr>
<tr>
<td>Living Building Challenge</td>
<td>2%</td>
<td>3</td>
<td>10%</td>
</tr>
<tr>
<td>Energy Star</td>
<td><1%</td>
<td>4</td>
<td>33%</td>
</tr>
<tr>
<td>NAHB Green Rating System</td>
<td><1%</td>
<td>4</td>
<td>10%</td>
</tr>
<tr>
<td>CASBEE</td>
<td><1%</td>
<td>4</td>
<td>2.5%</td>
</tr>
</tbody>
</table>
Some feedback from AEC sector

• “I would like to see some **team building approaches** include in programmes where students get to apply sustainability principles where they would apply themselves to solve a project that included sustainable solutions”

• “Allow them to come up with **sustainable solutions through real projects** and/or simulations”

• “Graduates should have the necessary **skills** to implement sustainable practices”

• “We rely on graduates to address **the knowledge gaps that we have**”

• “There should be some incentive to employing graduates **where they can learn the cutting edge applications of new practices**”
Conclusion

• Outcomes from research
• Continues to be a gap between industry and education expectation
 • It is a general issue that requires a local response (context)
• Need for greater effort to be made to embed sustainability in BE HE education
• Similar problems across the regions

• Future research
• Qualitative R work with industry stakeholders
• Report on the outcomes from what research from students indicates – both pre and post course and post course
• Compare across the groups
Conclusion

• Outcomes from research
• Continues to be a gap between industry and education expectation
• Need for greater to be embed sustainability in BE HE education

• Future research
• Qualitative work with industry stakeholders
• Report on the outcomes from what research from students

Lots done! More to do!
“To reverse the effects of civilization would destroy the dreams of a lot of people. There's no way around it. We can talk all we want about sustainability, but there's a sense in which it doesn't matter that these people's dreams are based on, embedded in, intertwined with, and formed by an inherently destructive economic and social system. Their dreams are still their dreams. What right do I -- or does anyone else -- have to destroy them.

At the same time, what right do they have to destroy the world?”
